Traces and extensions of certain weighted Sobolev spaces on $$\mathbb {R}^n$$ and Besov functions on Ahlfors regular compact subsets of $$\mathbb {R}^n$$
نویسندگان
چکیده
The focus of this paper is on Ahlfors Q-regular compact sets $$E\subset \mathbb {R}^n$$ such that, for each $$Q-2<\alpha \le 0$$ , the weighted measure $$\mu _{\alpha }$$ given by integrating density $$\omega (x)=\text {dist}(x, E)^\alpha $$ yields a Muckenhoupt $$\mathcal {A}_p$$ -weight in ball B containing E. For E we show existence bounded linear trace operator acting from $$W^{1,p}(B,\mu _\alpha )$$ to $$B^\theta _{p,p}(E, \mathcal {H}^Q\vert _E)$$ when $$0<\theta <1-\tfrac{\alpha +n-Q}{p}$$ and extension $$W^{1,p}(B, \mu $$1-\tfrac{\alpha +n-Q}{p}\le \theta <1$$ . We illustrate these results with as Sierpinski carpet, gasket, von Koch snowflake.
منابع مشابه
Sobolev W 1 p-spaces on closed subsets of Rn
For each p > n we use local oscillations and doubling measures to give intrinsic characterizations of the restriction of the Sobolev space W 1 p (R n) to an arbitrary closed subset of Rn.
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولextensions, minimality and idempotents of certain semigroup compactifications
در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...
15 صفحه اولOn extensions of Sobolev functions defined on regular subsets of metric measure spaces
We characterize the restrictions of first order Sobolev functions to regular subsets of a homogeneous metric space and prove the existence of the corresponding linear extension operator. Let (X, d, µ) be a metric space (X, d) equipped with a Borel measure µ, which is non-negative and outer regular, and is finite on every bounded subset. In this paper we describe the restrictions of first order ...
متن کاملLinear Functions Preserving Sut-Majorization on RN
Suppose $textbf{M}_{n}$ is the vector space of all $n$-by-$n$ real matrices, and let $mathbb{R}^{n}$ be the set of all $n$-by-$1$ real vectors. A matrix $Rin textbf{M}_{n}$ is said to be $textit{row substochastic}$ if it has nonnegative entries and each row sum is at most $1$. For $x$, $y in mathbb{R}^{n}$, it is said that $x$ is $textit{sut-majorized}$ by $y$ (denoted by $ xprec_{sut} y$) if t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex analysis and its synergies
سال: 2021
ISSN: ['2197-120X', '2524-7581']
DOI: https://doi.org/10.1007/s40627-021-00064-1